

Features:

- Clutch for manual adjustments

TM000

- Maintenance free

TM020

- Position indicator
- Control signal fully programmable
- Fail safe by Enerdrive System ${ }^{1}$
(on model $060 \& 080$)
- Auxiliary switches

Technical Data	TM000	TM020	TM060	TM080	RM000	RM020	RM060	RM080
Power supply	28 to 32 Vdc or 22 to 26 Vac							
Power consumption	8 VA		30 VA Peak, 8VA		10 VA		30 VA Peak, 10VA	
Torque	180 in.lb. [20 Nm] at rated voltage				360 in.lb. [40 Nm] at rated voltage			
Running time through 90	60 to 85 sec torque dependant							
Fail safe - Enerdrive	No		Yes		No		Yes	
Feedback	4 to 20 mA or 2 to 10 Vdc adjustable							
Auxiliary switches	No	Yes (2)						
Electrical connection	18 AWG [$0.8 \mathrm{~mm}^{2}$] minimum							
Inlet bushing	2 inlet bushing of 7/8 in [22.2 mm]							
Control signal	Analog, Digital or Pulse with modulation (PWM) programmable (factory set with Analog control signal)							
Angle of rotation	0 to 90 degrees, electronically adjustable (factory set with 90 stroke)							
Direction of rotation	Reversible, Clockwise (CW) or Counterclockwise (CCW) (factory set with CW direction)							
Operating temperature	$0^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$ [-180 C to $50^{\circ} \mathrm{C}$]							
Storage temperature	$-22^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$ [$-30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$]							
Relative Humidity	5 to 95% non condensing							
Weight	4.5 lbs [2 kg]				7 lbs . [3.2 kg]			
Warning: Do not press the clutch when actuator is powered								

Dimensions

Caution

We strongly recommend that all Neptronic ${ }^{\circledR}$ products be wired to a separate transformer and that transformer shall service only Neptronic ${ }^{\oplus}$ products. This precaution will prevent interference with, and/or possible damage to incompatible equipment.
When multiple actuators are wired on a single transformer, polarity must be observed. Long wiring runs create voltage drop which may affect the actuator performance

[^0]
Specification \& Installation Instructions

Mechanical installation

Wiring Diagrams

${ }^{1}$ For 4 to 20 mA control signal set dipswitch \#3 ON.
${ }^{2}$ For 2 to 10 Vdc control signal set dipswitch \#4 ON.

Digital - 3 wire / 2 position

Special consideration for digital control
In this mode, the actuator is sensitive to induced electrical voltages from external sources. To prevent such interference, if the signal on pin 3 on TB1 is from an external 24 Vac source, install a resistor $2.2 \mathrm{kohm}, 0.5 \mathrm{~W}$ between pins 3 and 1 of TB1. This resistor is included.
dIP SWITCH \#3 MUST BE OFF IN DIGITAL MODE

For 2 to 10 Vdc input

For analog wiring, set dipswitch \#3 OFF.
For 2 to 10 Vdc output feedback
For any of above wiring configurations, set dipswitch \#4 ON.
For 4-20 mA analog input
For analog wiring, set dipswitch \#3 ON.

For 4-20 mA output feedback

For any of above wiring configurations, set dipswitch \#4 OFF.

PC Board
(2)

Stroke adjustment - No control signal change

1. Apply power and, WAIT FOR LED TO BE OFF (around 10 seconds).
2. Press and release the reset button to start the auto-stroke process.

The LED should be illuminated.

- First option:

The actuator will then travel in both directions to find its limit and position itself according to the demand.
The LED will extinguish, the process is complete.

- Second option:

When the desired start position is reached, press and release the reset button. The actuator will now go the end position. (you can also press and release the reset button when It's reaches the end position)
The LED will extinguish, the process is complete.

Programming - Change of control signal

1. Remove power and put all dip switches "OFF". (factory preset).
2. Apply power and, within $\mathbf{1 0}$ seconds, press and release the reset button. The LED should be blinking.
3. Select the control signal with dip switches:

- Digital (On/Off or 3 point floating)
move switch No1 "ON" and then "OFF".
- Analog (factory preset)
move switch No2 "ON" and then "OFF".

Stroke adjustment

see the stroke adjustment section above.
Note, If PWM mode is selected:

- Time base: When programming is done,
if switch No3 is "on" time base is 0.1 to 5 sec . (resolution 20 msec .)
if switch No3 is "off" time base is 0.1 to 25 sec . (resolution 100 msec .)
* For 5 sec. time base, we strongly recommend a switch common connection for better position stability.
- Switch 24 Vac: Triac or dry contact, 40 mA maximum switching current.
- Switch common: NPN transistor, SCR, Triac or dry contact 75 mA maximum switching current.

Feedback selection (CCW direction)

To select CCW direction put switch No1 "ON".
In Analog or 3 point floating mode you can program the feedback control.

If switch No3 is "OFF":
The feedback control is automatically reverse to 4 to 20 mA for 90 to 0 degrees.

If switch No3 is "ON":
The feedback control is to 20 to 4 mA for 90 to 0 degrees.

Zero and span calibration

This feature is applicable to analog control signal only.

1. Remove power and put all dip switches "OFF". (factory preset).
2. Apply power and, within $\mathbf{1 0}$ seconds press and hold the reset button until the LED blinks once.

The Zero and span calibration process then start.
3. Release the reset button. The LED is now constantly illuminated.
4. Apply new minimum voltage. It can be any value between 0 to 7 Vdc , with an external 0 to 10 volt supply (ex: MEP).
5. Press and release the reset button to memorize the new minimum voltage. The LED blinks.
6. Apply new maximum voltage. It can be any value between 3 to 10 Vdc , this value should be greater than the new minimum value.
7. Press and release the reset button to memorize the new maximum voltage. The LED blinks. The Zero and span calibration process is complete.

Note: To reset zero and span to 2 to 10 Vdc (factory value). You just have to re-select the analog control signal mode, see Programming.

Wiring Diagrams for auxiliary switches

[^0]: ${ }^{1}$ Enerdrive System U.S.A. Patent \#5,278,454

