SIEMENS

Technical Instructions

Document No. 125-4361 June 17, 2008

MVF461H Series

Modulating Control Valves with Magnetic Actuators, Positioning Control and Position Feedback for Hot Water and Steam

Description

Control valves with magnetic actuators, for modulating control of hot water, high temperature hot water, and steam.

Features

- Fast positioning time (< 2 seconds)
- Selectable valve characteristic: Equal percentage or linear
- Selectable standard interface: 0/2 to 10 Vdc or 0/4 to 20 mA
- High resolution (>1:1000)
- High rangeability
- Wear-free inductive stroke measurement
- Spring return A → AB closed when de-energized
- Positioning control and position feedback signal
- Low-friction, heavy-duty and maintenance-free
- Phase-cut signal input for Staefa controllers

Product Numbers

See Table 1.

Warning/Caution Notations

WARNING:	A	Personal injury or loss of life may occur if you do not follow the procedures as specified.
CAUTION:	A	Equipment damage or loss of data may occur if you do not follow the procedures as specified.

Application

The MVF461H Series valves are through-port or mixing valves with magnetic actuators. The actuator is equipped with an electronics module for positioning control and position feedback. If the power is off, the valve control path $A \rightarrow AB$ is closed.

The short positioning time, high resolution and high rangeability make these valves ideal for proportional control of district heating stations, and heating applications using high temperature hot water and steam.

Table 1. Product Numbers.

								Wire Gauge (AWG)		
Product	Line Size	Cv	Δp_{S}	∆p _V max	S_{NA}	Pmed	I _N	16	14	12
Number	(in)		(psi)	(psi)	(VA)	(W)	Fuse		L (ft)	
MVF461H15-0.6	1/2	0.7	145	145	33	15	3.15	130	215	360
MVF461H15-1.5	1/2	1.8	145	145	33	15	3.15	130	215	360
MVF461H15-3	1/2	3.5	145	145	33	15	3.15	130	215	360
MVF461H20-5	3/4	5.9	145	145	33	15	3.15	130	215	360
MVF461H25-8	1	9.4	145	145	33	15	3.15	130	215	360
MVF461H32-12	1-1/4	14.0	145	145	43	20	4	100	165	260
MVF461H40-20	1-1/2	23.3	145	145	65	20	6.3	100	165	260
MVF461H50-30	2	35.0	145	145	65	26	6.3	65	100	165

Key:

L

 $\Delta p_V max$ = Maximum permissible differential pressure across the valve's control path, valid for the entire actuating range of the motorized valve (maximum

recommended operating differential pressure).

 Δp_s = Maximum permissible differential pressure at which the motorized valve will

close securely against the pressure (close-off pressure).

 S_{NA} = Nominal apparent power for selecting the transformer.

Pmed = Average true power. I_N = Slow fuse (mandatory).

Cv = Nominal flow rate of cold water [41°F to 86°F (5°C to 30°C)].

 Maximum cable length. With four-wire connections the maximum permissible length of the separate 14 AWG Cu signal cable is 656 feet

(200 m).

Ordering

The valve body and magnetic actuator assemblies cannot be separated. The assemblies can also be ordered with NPT flanges or weld flanges. To order with NPT flanges, add an "-N" suffix to the part number. To order with Weld Flanges, add a "-W" suffix to the part number. When placing an order, specify the quantity, product number and description.

Examples: (without flanges) 1 MVF461H15-0.6 valve

(with NPT flanges)1 MVF461H15-0.6-N valve with NPT flanges(with weld flanges)1 MVF461H15-0.6-W valve with weld flanges

Accessory

ASE12 Replacement Circuit Board

Technical/ Mechanical Design

Automatic Control

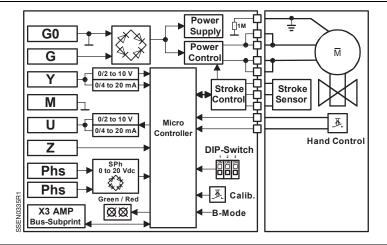
The electronics module converts the positioning signal to a phase-cut power signal, which generates a magnetic field in the coil. This causes the armature to change its position according to the interacting forces (magnetic field, counterspring, hydraulics, etc.). The armature responds rapidly to any change in signal, transferring the corresponding movement directly to the valve plug. This enables fast changes in load to be corrected quickly and accurately.

The valve's position is measured continuously. Any disturbance in the system is rapidly corrected by the internal positioning controller, which ensures that the positioning signal and the valve stroke are exactly proportional, and also delivers the position feedback signal.

Control

The magnetic actuator can be driven by any controller with a 0/2 to 10 Vdc or 0/4 to 20 mA output signal.

To achieve optimum control performance, using a 4-wire connection for the valve is recommended.


The controller's signal ground terminal M must be connected to the valve's terminal M. Terminals M and G0 have the same potential and are internally interconnected in the valve's electronics.

A

CAUTION:

You must use a four-wire connection with Vdc power supply.

Basic Diagram

Spring Return Action

If the power or positioning signal is switched off or fails, the valve control path (port $A \rightarrow AB$) is automatically closed by the force of the spring.

Table 2. Indication of Operating State.

LED	Indication	Operating State, Function	Remarks, Troubleshooting			
	Lit	Control mode	Normal operation; everything is OK.			
Green	Flashing	Calibration	Wait until calibration is finished (green or red LED will be lit).			
		In manual control	Hand wheel in Man or Off position.			
Lit		Calibration error Internal error	Recalibrate (bridge contacts behind the calibration slot). Replace electronics module.			
Red	Flashing	Main fault DC Supply -/+	Check electric main network (outside the frequency or voltage range); Vdc supply +/- connection polarity.			
Both	Dark	No power supply Electronics faulty	Check electric main network, check wiring Replace electronics module.			

Manual adjustment

Press (a) and turn the hand wheel (b):

- clockwise (CW). Control path A → AB can be mechanically opened to between 80% and 90%, or
- counterclockwise (CCW). The actuator will be switched off and the valve closed.

As soon as the hand wheel is pressed and turned, neither the forced control signal Z, the input signal Y, nor the phase-cut signal acts on the actuator. The green LED will flash.

For automatic control, the hand wheel must be set to the Auto position. The green LED will be lit.

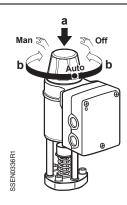


Figure 1.

Calibration

If the electronics module is replaced or the actuator turned through 180°, the valve's electronics must be recalibrated. To recalibrate, the hand wheel must be set to Auto.

The printed circuit board has a slot (see Figure 2). Calibrate by bridging the contacts located behind the slot on the printed circuit board, using a screwdriver. The valve will then travel across the full stroke to store the end positions.

While calibration is in progress, the green LED will flash for about 10 seconds (see *Table 2. Indication of Operating State*).

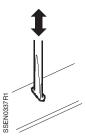


Figure 2.

DIP Switches

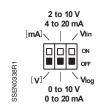
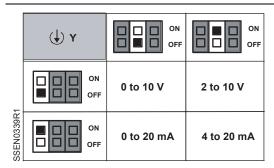



Figure 3. Configuration DIP Switches.

DIP	Function	OFF (Default)	ON	Remarks
1 ON OFF	Voltage or current input	[٧]	[mA]	Assignment of terminal Y: Voltage or current
2 ON OFF	Correcting span Terminals Y and U	0 to 10 Vdc, 0 to 20 mA	2 to 10 Vdc, 4 to 20 mA	Offset settings of input and output
3 ON OFF	Characteristic	V _{log} (equal percentage)	V _{lin} (linear)	

DIP Switches, Continued

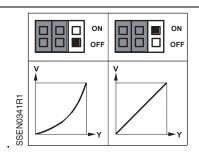



Figure 4. Assignment of Positioning Signal Y: Voltage or Current.

Figure 5. Selection of Valve Characteristic: Equal-Percentage or Linear.

Output signal U (position feedback signal) is dependent on the load resistance. Above 500 ohm, it is automatically a voltage signal; below 500 ohm a current signal.

Figure 6. Assignment of Correct Span Y and U: 0 to 10 Vdc/0 to 20 mA or 2 to 10 Vdc/4 to 20 mA.

Forced Control Input

Connections

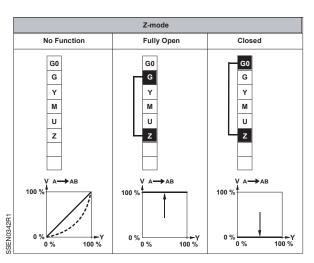
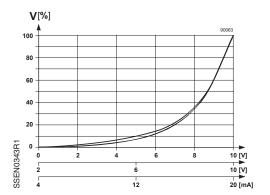


Figure 7.


If terminal Z for the forced control input is:

- not connected, the valve will follow the Y-signal or the phase-cut signal.
- connected to G, the valve will fully open via control path $A \rightarrow AB$.
- connected to G0, the valve will close via control path A → AB.

Signal Priority

- 1. Hand wheel position Man or Off
- 2. Forced control signal Z
- 3. Phase-cut signal
- 4. Signal input Y

Characteristic

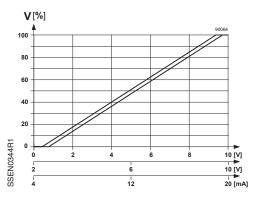


Figure 8. Equal Percentage.

Figure 9. Linear.

Installation Notes

- Installation instructions for the valve and terminal housing are enclosed with the valve.
- For electrical installation, see Wiring Diagrams.

CAUTION:

- Always disconnect the power before fitting or removing the terminal housing. The terminal housing is calibrated and matched to the actuator, and should be replaced only by qualified personnel.
- Valve may only be used in flow direction (A → AB). Note the flow direction.
- Do not allow the surface temperature of the actuator to fall below the dew point temperature of the surrounding air (causing condensation).
 If necessary, insulate the valve. Do not insulate the actuator.

Mounting Position

Vertical to horizontal mounting: Do not mount the valve below horizontal.

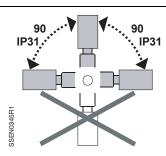


Figure 10. Acceptable Mounting Positions.

Specifications	Low-voltage use only	Class 2 (SELV, PELV)
opoomoutions	24 Vac	
Electrical	Operating voltage	24 Vac +20/-15%
	Frequency	45 to 65 Hz
	Typical power consumption	See Table 1, P _{med}
	Standby	<1 W (valve fully closed)
	Nominal apparent power	See Table 1, S _{NA}
	Suitable fuse	Slow, see Table 1, I _N
	24 Vdc	
	Operating voltage	20 to 30 Vdc

Specifications,	Input				
Continued	Positioning signal Y	0/2 to 10 Vdc, 0/4 to 20 mA,			
	Impadance 0/2 to 10 V/de	or 0 to 20 Vdc Phs			
Functional data of actuator	Impedance 0/2 to 10 Vdc 0/4 to 20 mA	100K ohm//5nF 240 ohm//5nF			
	Forced control				
	Impedance	22K ohm			
	Closing the valve (Z connected to G0)	<1 Vac; <0.8 Vdc			
	Opening the valve (Z connected to G0) No function (Z not wired)	>6 Vac; >5 Vdc Phase-cut or positioning signal Y active			
	Output				
	Position feedback signal voltage current	0/2 to 10 Vdc; load resistance > 500Ω 0/4 to 20 mA; load resistance \leq 500Ω			
	Stroke measurement	Inductive			
	Nonlinearity	±3% of end value			
Functional data of valve	Nominal pressure	ANSI 125 (PN 16)			
	Permissible Operating pressure 1)				
	Water up to 248°F (120°C):	232 psi (16 bar)			
	Water above 248°F (120°C):	188 psi (13 bar)			
	Saturated steam:	130 psi (9 bar)			
	Pressure differential $\Delta p_{\text{max}}/\Delta p_{\text{S}}$	145 psi (10 bar)			
	Leakage at $\Delta p = 0.1 \text{ MPa } (1 \text{ bar})$	$A \rightarrow AB$ Maximum 0.05% C_V			
	Media temperature	34°F to 356°F (>1°C to 180°C)			
	Valve characteristic ²⁾	Equal percentage or linear, optimized near the closing point			
	Resolution ΔH/H ₁₀₀	1:1000 (H = Stroke)			
	Type of operation	Modulating			
	Position when de-energized	A → AB closed			
	Orientation:	Upright to horizontal			
	Positioning time	< 2 seconds			
Materials	Valve body	Modular cast iron			
	Cover flange	Modular cast iron			
	Seat/Inner valve	Stainless Steel			
	Valve stem seal	EPDM (O-ring)			
Electrical connections	Cable entries	3 × M20 × 1.5 or PG13.5/G1/2			
	Connection terminals	Screw terminals for up to 12 AWG wires			
	Min. cross-sectional area 3)	0.75 mm ²			
	Max. cable length	See Table 1			
Ambient conditions	Temperature				
	Operation and storage	23°F to 113°F (-5°C to 45°C)			
	Transport	-13°F to 158°F (-25°C to 70°C)			
	Humidity	5 to 95% rh (non-condensing)			

^{1.} Tested at 1.5 × PN (24 bar), similar to DIN 3230-3. 2. Can be selected via DIP switch.

^{3.} In case of strong vibrations, use high-flex stranded wires.

Specifications, Continued	Degree of protection Canadian registration number	IP31 to IEC 529 0C12337.5 Conforms to CE requirements				
Agency approvals		UL 873 Certified to Canadian standard C22.2 No. 24				
		C-Tick N-474				
		PED 97/23/EC: pressure-carrying parts				
		Par. 1, section. 2.1.4/Par. 3, section 3				
		Fluid group 2				
Miscellaneous	Weight	See Figure 15				
	Dimensions	See Figure 15				

Connection Terminals

WARNING:

If the controller and the valve receive their power supply from separate sources, the valve transformer must not be grounded on the secondary side.

A four-wire connection is mandatory with DC power supply.

Controllers with: 0 to 10 Vdc 2 to 10 Vdc 0 to 20 mA 4 to 20 mA

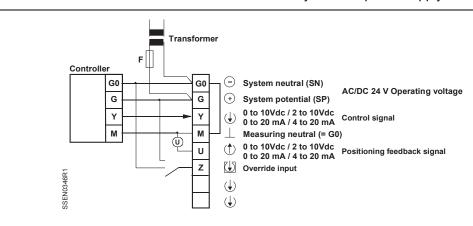


Figure 11.

Controllers with phase-cut 0 to 20 Vdc

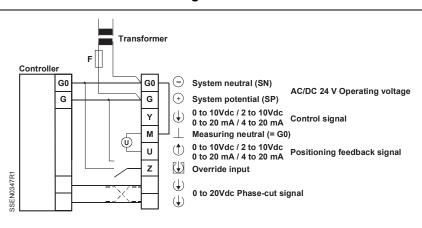


Figure 12.

Application Examples

This example shows only a schematic diagram, without installation-specific details.

CAUTION:

Valve may only be used in flow direction (A \rightarrow AB). Note the flow direction.

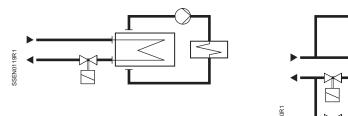


Figure 13. Direct Heating (Supply) System, Indirect Connection.

Figure 14. Direct Heating (Supply)
System, Directly connected to WaterHeating System.

Service

CAUTION:

Do not disassemble the valve and actuator combination. This assembly is factory-calibrated, and should only be replaced by qualified personnel.

Always disconnect power before fitting or removing the electronics module.

- The low-friction and robust, maintenance-free design makes regular servicing unnecessary and ensures a long service life.
- The valve stem is sealed from external influences by a maintenance-free gland.
- If the red LED is lit, the electronics must be recalibrated or replaced.
- If the valve electronics are faulty, they must be replaced. After replacing the electronics, they must be recalibrated. See *Calibration*.
- If required, the circuit board can be replaced. Order Part Number ASE12.

Dimensions

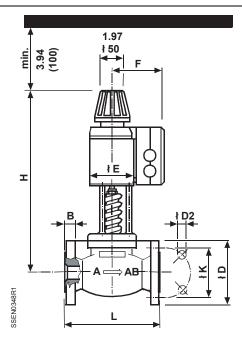


Figure 15. Dimensions in Inches (Millimeters).

Product Number	DN	L	ØD	ØD2	В	ØK	Н	ØE	F	W Ib
										(kg)
MVF461H15-0.6	15	5.12 (130)	3.74 (95)	0.16×0.55 (4×14)	0.55 (14)	2.56 (65)	13.4 (340)	3.15 (80)	4.53 (115)	18.3 (8.3)
MVF461H15-1.5	15	5.12 (130)	3.74 (95)	0.16×0.55 (4×14)	0.55 (14)	2.56 (65)	13.4 (340)	3.15 (80)	4.53 (115)	18.3 (8.3)
MVF461H15-3	15	5.12 (130)	3.74 (95)	0.16×0.55 (4×14)	0.55 (14)	2.56 (65)	13.4 (340)	3.15 (80)	4.53 (115)	18.3 (8.3)
MVF461H20-5	20	5.91 (150)	4.13 (105)	0.16×0.55 (4×14)	0.63 (16)	2.95 (75)	13.3 (339)	3.15 (80)	4.53 (115)	19.6 (8.9)
MVF461H25-8	25	6.30 (160)	4.53 (115)	0.16×0.55 (4×14)	0.63 (16)	3.35 (85)	13.6 (346)	3.15 (80)	4.53 (115)	22.1 (10.0)
MVF461H32-12	32	7.09 (180)	5.51 (140)	0.16×0.71 (4×18)	0.71 (18)	3.94 (100)	15.12 (384)	3.94 (100)	4.92 (125)	34.6 (15.7)
MVF461H40-20	40	7.87 (200)	5.91 (150)	0.16×0.71 (4×18)	0.71 (18)	4.33 (110)	15.79 (401)	3.94 (100)	4.92 (125)	39.2 (17.8)
MVF461H50-30	50	9.05 (230)	6.50 (165)	0.16×0.71 (4×18)	0.79 (20)	4.92 (125)	17.58 (449)	4.92 (125)	5.43 (138)	60.0 (27.2)

Information in this publication is based on current specifications. The company reserves the right to make changes in specifications and models as design improvements are introduced. Other product or company names mentioned herein may be the trademarks of their respective owners. © 2005 Siemens Building Technologies, Inc.